An ongoing collection of the books, articles, etc. that I continue to find myself referencing

Emissions and Climate

Emissions and Radiative Forcing

Emissions Intensity

Negative Emissions

Atmospheric Chemistry and Climate

Methane

Energy

Overall

Fuels

Manufacturing

Industrial Policy

Cement

Steel

Recycling / Circular Economy

Hydrogen

Buildings

Cooling

Food & Agriculture

Emissions and Projections

Land Use

Food Supply

Cows

Row Crops

Transportation

Last-Mile Delivery

Passenger Transport

Carbon Cycle

Geological

Forests

Demographic Projections

Population

Life Expectancy

Economics

Cost Projections

GDP and Income

Wellness Indices

Policy

Frameworks for GHG Analysis

Thermodynamic Data

Sequestration

Miscellaneous

Complete Reference List

Gyllenram, R., Arzpeyma, N., Wei, W., & Jönsson, P. G. (2022). Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route. Mineral Economics, 35(2), 203–220. https://doi.org/10.1007/s13563-021-00267-2
Spreitzer, D., & Schenk, J. (2019). Reduction of Iron Oxides with Hydrogen—A Review. Steel Research International, 90(10), 1900108. https://doi.org/10.1002/srin.201900108
Naseri Seftejani, M., & Schenk, J. (2018). Thermodynamic of Liquid Iron Ore Reduction by Hydrogen Thermal Plasma. Metals, 8(12), 1051. https://doi.org/10.3390/met8121051
Gyllenram, R., Arzpeyma, N., Wei, W., & Jönsson, P. G. (2022). Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route. Mineral Economics, 35(2), 203–220. https://doi.org/10.1007/s13563-021-00267-2
Zang, G., Sun, P., Elgowainy, A., Bobba, P., McMillan, C., Ma, O., Podkaminer, K., Rustagi, N., Melaina, M., & Koleva, M. (2023). Cost and Life Cycle Analysis for Deep CO2 Emissions Reduction for Steel Making: Direct Reduced Iron Technologies. Steel Research International, 94(6), 2200297. https://doi.org/10.1002/srin.202200297
Mendoza, L. R. (2019). DRY BENEFICIATION OF LOW-GRADE IRON ORE FINES USING A TRIBO- ELECTRIC BELT SEPARATOR.
Leading companies in vacuum pumps. (n.d.). Thunder Said Energy. Retrieved March 22, 2024, from https://thundersaidenergy.com/downloads/vacuum-pumps-company-screen/
Burgmann, W., & Davené, J. (2012). Cost structure of vacuum degassing treatment for melt. 47, 81–88.
Hallström, S., Höglund, L., & Ågren, J. (2011). Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Materialia, 59(1), 53–60. https://doi.org/10.1016/j.actamat.2010.08.032
Hallström, S., Höglund, L., & Ågren, J. (2011). Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Materialia, 59(1), 53–60. https://doi.org/10.1016/j.actamat.2010.08.032
Czarski, A., Skowronek, T., & Matusiewicz, P. (2015). Stability of a Lamellar Structure – Effect of the True Interlamellar Spacing on the Durability of a Pearlite Colony / Stabilność Struktury Płytkowej – Wpływ Rzeczywistej Odległości Międzypłytkowej Na Trwałość Kolonii Perlitu. Archives of Metallurgy and Materials, 60(4), 2499–2504. https://doi.org/10.1515/amm-2015-0405
Wang, H., Cao, G., Li, S., Zhao, W., & Liu, Z. (2023). Eutectoid Transformation Kinetics of FeO under N2 and Air Atmospheres. Metals, 13(2), 220. https://doi.org/10.3390/met13020220
Zhang, C.-L., Li, S., Wu, T.-H., & Peng, S.-Y. (1999). Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction. Materials Chemistry and Physics, 58(2), 139–145. https://doi.org/10.1016/S0254-0584(98)00267-3
Judge, W. D., Allanore, A., Sadoway, D. R., & Azimi, G. (2017). E-logpO2 diagrams for ironmaking by molten oxide electrolysis. Electrochimica Acta, 247, 1088–1094. https://doi.org/10.1016/j.electacta.2017.07.059
Peng, Z., Hwang, J.-Y., Zhang, Z., Andriese, M., & Huang, X. (2012). Thermal Decomposition and Regeneration of Wüstite. In 3rd International Symposium on High-Temperature Metallurgical Processing (pp. 146–156). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118364987.ch18
roof and siding contractor. (n.d.). Retrieved March 4, 2024, from https://www.google.com/localservices/prolist?g2lbs=AIQllVzyAIbOPPGJAS4wiXw6IGIAJlLLC0eN4CkcV9e4aX5DsOFxdA7BPRpdjStl4ctfpZusmhyuyV42Sv2ViShWS2SqBEdwA0U6OpZODj0H7Wfl6r_91_NxeR8Wwty8HqxELEFcPRIw&hl=en-US&gl=us&cs=1&ssta=1&q=roof%20and%20siding%20contractor&oq=roof%20and%20siding%20contractor&slp=MgA6HENoTUl4ZXVBMU1MWmhBTVZiQmF0QmgwUXh3ZzNSAggCYAB6wgJDaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZja2k2OU43OXNiQ0FnQWhhS2hBQUVBRVFBaEFER0FBWUFoZ0RJaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZjcElCRW5KdmIyWnBibWRmWTI5dWRISmhZM1J2Y3FvQmd3RUtDUzl0THpBek4yTjVkd29KTDIwdk1EUnpPRFI1Q2dndmJTOHdObWg1WkJBQktoNGlHbkp2YjJZZ1lXNWtJSE5wWkdsdVp5QmpiMjUwY21GamRHOXlLQUF5SHhBQklodlJyLTM2d2JzUEFibU1TamNoT3RzWDhvWGg5ZlFDbHViVUNib3lIaEFDSWhweWIyOW1JR0Z1WkNCemFXUnBibWNnWTI5dWRISmhZM1J2Y3VBQkFBkgGnAgoNL2cvMTFqZGh3aGdrdgoLL2cvMXRneHRzN2sKDS9nLzExdjlmbGcycXAKDS9nLzExYjZzeXZoeG4KDS9nLzExYnltdjB0emQKCy9nLzF0ZjNwM3MwCg0vZy8xMWoyejZnY2dyCgwvZy8xaGR6aHdudnkKDC9nLzFobTVkOHNieAoLL2cvMXRnMzVmd3kKDS9nLzExYnR2d3kxeGwKDS9nLzExdDZyNXExancKCy9nLzF2NnA5MjI1Cg0vZy8xMWY1aG0zZmRoCgsvZy8xdGR4dzduZgoML2cvMWhod2ZraGJoCg0vZy8xMXNoMGQ1cWg5CgsvZy8xdGZ6Z19kegoNL2cvMTFiYnJneG5mcgoLL2cvMXRmdzM4NmsSBBICCAESBAoCCAE%3D&src=2&spp=Cg0vZy8xMXY5ZmxnMnFwOugBV2lRUUFCQUJFQUlRQXlJYWNtOXZaaUJoYm1RZ2MybGthVzVuSUdOdmJuUnlZV04wYjNLcUFZTUJDZ2t2YlM4d016ZGplWGNLQ1M5dEx6QTBjemcwZVFvSUwyMHZNRFpvZVdRUUFTb2VJaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZjaWdBTWg4UUFTSWIwYV90LXNHN0R3RzVqRW8zSVRyYkZfS0Y0ZlgwQXBibTFBbTZNaDRRQWlJYWNtOXZaaUJoYm1RZ2MybGthVzVuSUdOdmJuUnlZV04wYjNJPQ%3D%3D&serdesk=1&lrlstt=1709517974620&ved=2ahUKEwjLjfjTwtmEAxXFDTQIHeQUCaAQvS56BAgcEAE&scp=ChdnY2lkOnJvb2ZpbmdfY29udHJhY3RvchJMEhIJ5S3R6VeFhYARKkGG8Fx3pt8iHlRhbWFscGFpcy1Ib21lc3RlYWQgVmFsbGV5LCBDQSoUDa50jxYVdjjwth1zmJgWJTjf-rYwARoacm9vZiBhbmQgc2lkaW5nIGNvbnRyYWN0b3IiGnJvb2YgYW5kIHNpZGluZyBjb250cmFjdG9yKhJSb29maW5nIGNvbnRyYWN0b3I6AjAC
Leisner, T., Duft, D., Möhler, O., Saathoff, H., Schnaiter, M., Henin, S., Stelmaszczyk, K., Petrarca, M., Delagrange, R., Hao, Z., Lüder, J., Petit, Y., Rohwetter, P., Kasparian, J., Wolf, J.-P., & Wöste, L. (2013). Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions. Proceedings of the National Academy of Sciences, 110(25), 10106–10110. https://doi.org/10.1073/pnas.1222190110
Critical Issues in Weather Modification Research. (2003). National Academies Press. https://doi.org/10.17226/10829
Intergovernmental Panel On Climate Change. (2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896
Aerosols and their Relation to Global Climate and Climate Sensitivity | Learn Science at Scitable. (n.d.). Retrieved February 21, 2024, from https://www.nature.com/scitable/knowledge/library/aerosols-and-their-relation-to-global-climate-102215345/
Download: Critical Issues in Weather Modification Research | The National Academies Press. (n.d.). Retrieved February 21, 2024, from https://nap.nationalacademies.org/download/10829
Friedrich, K., Ikeda, K., Tessendorf, S. A., French, J. R., Rauber, R. M., Geerts, B., Xue, L., Rasmussen, R. M., Blestrud, D. R., Kunkel, M. L., Dawson, N., & Parkinson, S. (2020). Quantifying snowfall from orographic cloud seeding. Proceedings of the National Academy of Sciences, 117(10), 5190–5195. https://doi.org/10.1073/pnas.1917204117
Critical Issues in Weather Modification Research. (2003). National Academies Press. https://doi.org/10.17226/10829
News, C. H., E&E. (n.d.). Eight States Are Seeding Clouds to Overcome Megadrought. Scientific American. Retrieved February 21, 2024, from https://www.scientificamerican.com/article/eight-states-are-seeding-clouds-to-overcome-megadrought/
Eberly, D. L., & Robinson, L. H. (1967). DESIGN AND EVALUATION OF RANDOMIZED WINTERTIME CLOUD SEEDING AT HIGH ELEVATION. In L. M. Le Cam & J. Neyman (Eds.), Weather Modification Experiments (pp. 65–90). University of California Press. https://doi.org/10.1525/9780520313903-007
Weather Modification Frequently Asked Questions. (n.d.). Retrieved February 21, 2024, from https://www.tdlr.texas.gov/weather/weatherfaq.htm
Park, J., Nebel, R., Stange, S., & Murali, S. (2005). Experimental Observation of a Periodically Oscillating Plasma Sphere in a Gridded Inertial Electrostatic Confinement Device. Physical Review Letters, 95(1), 015003. https://doi.org/10.1103/PhysRevLett.95.015003
Nebel, R. A., & Finn, J. M. (2000). Kinetic and fluid calculations for the periodically oscillating plasma sphere. Physics of Plasmas, 7(3), 839–843. https://doi.org/10.1063/1.873880
Nebel, R. A., & Finn, J. M. (2000). Kinetic and fluid calculations for the periodically oscillating plasma sphere. Physics of Plasmas, 7(3), 839–843. https://doi.org/10.1063/1.873880
Aebi, C., Gröbner, J., Kazadzis, S., Vuilleumier, L., Gkikas, A., & Kämpfer, N. (2020). Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne. Atmospheric Measurement Techniques, 13(2), 907–923. https://doi.org/10.5194/amt-13-907-2020
Akana Nguimdo, L. (2021). Vertical profile of atmospheric single scattering properties and assessment of the effects of temporal variability of cloud water content over Yaounde. Atmospheric Environment, 261, 118525. https://doi.org/10.1016/j.atmosenv.2021.118525
Lohmann, U., Tselioudis, G., & Tyler, C. (2000). Why is the cloud albedo — Particle size relationship different in optically thick and optically thin clouds? Geophysical Research Letters, 27(8), 1099–1102. https://doi.org/10.1029/1999GL011098
Peng, Y., Lohmann, U., Leaitch, R., Banic, C., & Couture, M. (2002). The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE. Journal of Geophysical Research: Atmospheres, 107(D11), AAC 1-1-AAC 1-6. https://doi.org/10.1029/2000JD000281
Elshorbany, Y., Barnes, I., Becker, K. H., Kleffmann, J., & Wiesen, P. (2010). Sources and Cycling of Tropospheric Hydroxyl Radicals – An Overview. Zeitschrift Für Physikalische Chemie, 224(7–8), 967–987. https://doi.org/10.1524/zpch.2010.6136
Elshorbany, Y., Barnes, I., Becker, K. H., Kleffmann, J., & Wiesen, P. (2010). Sources and Cycling of Tropospheric Hydroxyl Radicals – An Overview. Zeitschrift Für Physikalische Chemie, 224(7–8), 967–987. https://doi.org/10.1524/zpch.2010.6136
Ehhalt, D. H., Dorn, H.-P., & Poppe, D. (1990). The chemistry of the hydroxyl radical in the troposphere. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 97, 17–34. https://doi.org/10.1017/S0269727000005273
He, J., Naik, V., & Horowitz, L. W. (2021). Hydroxyl Radical (OH) Response to Meteorological Forcing and Implication for the Methane Budget. Geophysical Research Letters, 48(16), e2021GL094140. https://doi.org/10.1029/2021GL094140
Li, M., Karu, E., Brenninkmeijer, C., Fischer, H., Lelieveld, J., & Williams, J. (2018). Tropospheric OH and stratospheric OH and Cl concentrations determined from CH4, CH3Cl, and SF6 measurements. Npj Climate and Atmospheric Science, 1(1), 1–7. https://doi.org/10.1038/s41612-018-0041-9
Zhang, H., Li, Y., Zhao, Y., Li, G., & Zhang, F. (2019). Carbon Black Oxidized by Air Calcination for Enhanced H2O2 Generation and Effective Organics Degradation. ACS Applied Materials & Interfaces, 11(31), 27846–27853. https://doi.org/10.1021/acsami.9b07765
Liu, P., Ye, C., Zhang, C., He, G., Xue, C., Liu, J., Liu, C., Zhang, Y., Song, Y., Li, X., Wang, X., Chen, J., He, H., Herrmann, H., & Mu, Y. (2021). Photochemical Aging of Atmospheric Fine Particles as a Potential Source for Gas-Phase Hydrogen Peroxide. Environmental Science & Technology, 55(22), 15063–15071. https://doi.org/10.1021/acs.est.1c04453
Chu, L., & Anastasio, C. (2005). Formation of Hydroxyl Radical from the Photolysis of Frozen Hydrogen Peroxide. The Journal of Physical Chemistry A, 109(28), 6264–6271. https://doi.org/10.1021/jp051415f
Lockhart, J. P. A., Gross, E. C., Sears, T. J., & Hall, G. E. (2018). Investigating the photodissociation of H2O2 using frequency modulation laser absorption spectroscopy to monitor radical products. Chemical Physics Letters, 711, 148–151. https://doi.org/10.1016/j.cplett.2018.09.004
Sara Goldstein, *, Dorit Aschengrau, ‡, Yishay Diamant, ‡ and, & Rabani†, J. (2007, October 6). Photolysis of Aqueous H2O2: Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors [Research-article]. ACS Publications. https://pubs.acs.org/doi/pdf/10.1021/es071379t
Vione, D., Maurino, V., Minero, C., & Pelizzetti, E. (2003). The atmospheric chemistry of hydrogen peroxide: A review. Annali Di Chimica, 93, 477–488.
Kim, H., Parajuli, P. B., & Yu, F. (n.d.). Economic Analysis and Assessment of Syngas Production using a Modeling Approach.
Biomass boilers for industrial process heat | EECA. (n.d.). Retrieved January 9, 2024, from https://www.eeca.govt.nz/insights/eeca-insights/biomass-boilers-for-industrial-process-heat/
Author, N. G. (1979). Process Designs and Cost Estimates for a Medium BTU Gasification Plant Using a Wood Feedstock (SERI/TR-33-151, 6313805; p. SERI/TR-33-151, 6313805). https://doi.org/10.2172/6313805
Confirm Your Identity. (n.d.). Marriott International. Retrieved November 6, 2023, from https://www.marriott.com/rewards/myAccount/sendOtpChallenge.mi