An idealist believes she can be better.  A perfectionist believes she already should be.

Aspiration

You know the score.  We are responsible for, and aware of, a rapidly changing climate, the consequences of which will be unprecedented in not only the history of our species, but possibly the history of our planet.  We are knowingly belching out billions upon billions of tons of greenhouse gases, despite the path of self-ruin laid out before us.  What’s worse, we even know (at a high level, at least) what we must do to stem the tide, to prevent catastrophe.  

And yet we do (approximately) nothing.  

What are we to take from this fact?  How are we supposed to feel about our species, our society, that we should respond so flaccidly to a cause of, above all, self-preservation?  It’s understandable that so many of us have been left with a feeling of collective auto-antipathy.  

And once there… what a challenging whirlpool from which to pull oneself.  The thoughts stack on each other.  Do we even deserve saving (self-judgement)? There’s nothing I can do about it (lack of agency).  Why isn’t someone doing something about it (anger)?  It doesn’t matter anyway (apathy).

These destructive thought patterns, while perfectly valid perspectives in light of the data, are the opposite of generative.  I’ve suffered from them all at various stages of my own climate journey, and both my efficacy and experience of life and my common (hu)man suffered in turn.

So why am I smiling?

A few years ago I experienced a change in perspective that I’d like to share here, in the hopes that it might be helpful to you as it was to me in redoubling my efforts, and improving my daily experience of our collective journey from one of despair to one of hope.

First, a quick aside about assumptions.  Let us assume that there is, in fact, a path which we might take that precludes climate disaster while retaining the principle values that we hold dear and enabling a high quality of life for the vast majority of our species.  For several such paths, the IPCC is a good reference.*From a relative perspective, the best estimates of the cost of preventing a >2 degree C temperature change is ~1% of GDP, vs. the estimated cost of dealing with the consequences of ~5% of GDP


We’ve all likely come across the almost-platitudinous equation:

Happiness = Reality – Expectations

Like all models, it’s not absolutely correct but embodied in it is a certain truth.  I’d like to argue that a major source of our suffering at witnessing our collective non-response to the existential issue of climate is a correctable failure to set appropriate expectations for our species.  

Some of the best of us demand the best of ourselves.  In many ways, it’s an expression of love and respect to expect that ours is a species that should aspire to perfection in analytical and moral reasoning.  It evidences the potential we feel in ourselves and in humanity, and in that expectation lies much beauty.  However (specific religious models aside), we are not born from on high, our origins are not perfection… our species, and our moral logic, and even the very expectations which we have for ourselves are emergent properties of a biological system that is itself an emergent property of a unique set of boundary conditions on our planet.  So why is it that we set our bar of expectations for self without reference to the brutal morass from which we stemmed?

I’ll make a bold claim:

there has never been a species on Earth that has consciously reasoned to self-limiting behavior in response to, or in anticipation of, exceeding the carrying capacity of the ecosystem that it occupies

One can’t prove a negative, but to provide some heuristic logic, the above statement requires the concept of an ‘I’ (which we believe to be somewhat rarified), a model of the ecosystem within which one is living, and a compulsion to preserve a broader-than-oneself collective organism.  

So, why do we expect ourselves to do just that?  What priors do we have that indicate to us that this is reasonable to predict?  

We don’t.  It’s not reasonable.  We should expect ourselves to crash into the limits of our ecosystem and its carrying capacity and for us to only establish a steady state population through selection pressures out of our control.  The only data to the contrary we have is the acknowledgement that our species has transcended what we might expect from biological life on earth on many dimensions before, including moral and technological (see Enlightenment Now).  Indeed, through innovation we have continued to expand the ecosystems which we occupy and their respective carrying capacity.  From this pattern of transcendence we have come to expect a similar trajectory moving forward, and the narratives of being ‘special’ that are so attractive to maintain have been coupled to both entitlement and a self-imposed notion of responsibility for our collective fate.

But should we succeed, should we not choke ourselves on the product of our industry, in so doing we would be transcending our biological origins and evolving into the superorganism called humanity that controls its own selection pressures.  It would be extraordinary, unprecedented, and admirable.  And that is a compelling vision.  A vision worth aspiring to.  

It is this reframing from a story of failure to meet our potential to an aspirational narrative of the possible that I believe can set the mind free from caustic suffering and unlock a generative mindset.  

And we are so close!  The human population of Earth is projected to peak by 2100 at about 11.2 billion people.  GDP per unit of emissions has been steadily increasing (meaning the emissions intensity of productivity has been declining). We are firmly capable of providing a high quality of life for 11.2 billion people with even our existing resources… and we have not shown any sign of slowing down our inventiveness to continue to improve quality of life.  

This is our crucible, and we are in the unique position in history of being aware of this truth.  Perhaps in recognizing the unprecedented title to which we are aspiring, we can watch the unfolding of our species’ future with curiosity and a sense of appreciation and meaningfulness rather than dread and apathy.  And maybe, just maybe, we can consequently find the will to contribute in what ways we can to the vision to which we aspire.


An idealist believes that she can be better.  A perfectionist believes she already should be.  Let’s all be idealists.  

References

Segre, P. S., & Taylor, E. D. (2019). Large ants don’t carry their fair share: Maximal load carrying performance of leaf-cutter ants ( Atta cephalotes). Journal of Experimental Biology, jeb.199240. https://doi.org/10.1242/jeb.199240
Silva, A., Bacci Jr., M., Gomes de Siqueira, C., Correa Bueno, O., Pagnocca, F. C., & Aparecida Hebling, M. J. (2003). Survival of Atta sexdens workers on different food sources. Journal of Insect Physiology, 49(4), 307–313. https://doi.org/10.1016/S0022-1910(03)00004-0
Silva, A., Bacci, M., Gomes de Siqueira, C., Correa Bueno, O., Pagnocca, F. C., & Aparecida Hebling, M. J. (2003). Survival of Atta sexdens workers on different food sources. Journal of Insect Physiology, 49(4), 307–313. https://doi.org/10.1016/s0022-1910(03)00004-0
Haines, B. L. (1978). Element and Energy Flows Through Colonies of the Leaf-Cutting Ant, Atta colombica, in Panama. Biotropica, 10(4), 270–277. https://doi.org/10.2307/2387679
Wang, J., Li, Z., Park, A.-H. A., & Petit, C. (2015). Thermodynamic and kinetic studies of the MgCl2-NH4Cl-NH3-H2O system for the production of high purity MgO from calcined low-grade magnesite. AIChE Journal, 61(6), 1933–1946. https://doi.org/10.1002/aic.14789
Ren, G., Ye, J., Hu, Q., Zhang, D., Yuan, Y., & Zhou, S. (2024). Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nature Communications, 15(1), 4992. https://doi.org/10.1038/s41467-024-49429-0
Lee, S.-H., Kwon, Y., Kim, S., Yun, J., Kim, E., Jang, G., Song, Y., Kim, B. S., Oh, C.-S., Choa, Y.-H., Kim, J.-Y., Park, J. H., & Jeong, D.-W. (2024). A novel water electrolysis hydrogen production system powered by a renewable hydrovoltaic power generator. Chemical Engineering Journal, 495, 153411. https://doi.org/10.1016/j.cej.2024.153411
Seyfi, A., Afzalzadeh, R., & Hajnorouzi, A. (2017). Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chemical Engineering and Processing - Process Intensification, 120, 195–200. https://doi.org/10.1016/j.cep.2017.06.009
Chen, Y., He, J., Ye, C., & Tang, S. (2024). Achieving Ultrahigh Voltage Over 100 V and Remarkable Freshwater Harvesting Based on Thermodiffusion Enhanced Hydrovoltaic Generator. Advanced Energy Materials, 14(24), 2400529. https://doi.org/10.1002/aenm.202400529
Liu, P.-F., Miao, L., Deng, Z., Zhou, J., Su, H., Sun, L., Tanemura, S., Cao, W., Jiang, F., & Zhao, L.-D. (2018). A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Materials Today Energy, 8, 166–173. https://doi.org/10.1016/j.mtener.2018.04.004
Li, X., Zhang, K., Nilghaz, A., Chen, G., & Tian, J. (2023). A green and sustainable water evaporation-induced electricity generator with woody biochar. Nano Energy, 112, 108491. https://doi.org/10.1016/j.nanoen.2023.108491
Lasala, S., Privat, R., Herbinet, O., Arpentinier, P., Bonalumi, D., & Jaubert, J.-N. (2021). Thermo-chemical engines: Unexploited high-potential energy converters. Energy Conversion and Management, 229, 113685. https://doi.org/10.1016/j.enconman.2020.113685
Zhang, Z., Li, X., Yin, J., Xu, Y., Fei, W., Xue, M., Wang, Q., Zhou, J., & Guo, W. (2018). Emerging hydrovoltaic technology. Nature Nanotechnology, 13(12), 1109–1119. https://doi.org/10.1038/s41565-018-0228-6
Douville, H., Qasmi, S., Ribes, A., & Bock, O. (2022). Global warming at near-constant tropospheric relative humidity is supported by observations. Communications Earth & Environment, 3(1), 1–7. https://doi.org/10.1038/s43247-022-00561-z
Scribd. (n.d.). Scribd. Retrieved August 7, 2024, from https://www.scribd.com/fullscreen/30734361?access_key=key-yj7100lj9fj8cs54nz3
Energy Innovation: Massive Solar Downdraft Tower Proposed in Arizona | Energy Central. (n.d.). Retrieved August 7, 2024, from https://energycentral.com/c/ec/energy-innovation-massive-solar-downdraft-tower-proposed-arizona
Tao, T., Wang, Y., Ming, T., Mu, L., de Richter, R., & Li, W. (2023). Downdraft energy tower for negative emissions: Analysis on methane removal and other co-benefits. Greenhouse Gases: Science and Technology, 13(5), 713–720. https://doi.org/10.1002/ghg.2233
Chen, X., Goodnight, D., Gao, Z., Cavusoglu, A.-H., Sabharwal, N., DeLay, M., Driks, A., & Sahin, O. (2015). Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat Commun, 6. https://doi.org/10.1038/ncomms8346
Drinking-bird-enabled triboelectric hydrovoltaic generator - ScienceDirect. (n.d.). Retrieved August 7, 2024, from https://www.sciencedirect.com/science/article/pii/S266699862400108X
Lang, A. W., & Puzinauskas, P. V. (2008). Adding a Continuous Improvement Design Element to a Sophomore-Level Thermodynamics Course: Using the Drinking Bird as a Heat Engine. International Journal of Mechanical Engineering Education, 36(4), 366–372. https://doi.org/10.7227/IJMEE.36.4.7
Li, X., Feng, G., Chen, Y., Li, J., Yin, J., Deng, W., & Guo, W. (2024). Hybrid hydrovoltaic electricity generation driven by water evaporation. Nano Research Energy, 3(2). https://doi.org/10.26599/NRE.2024.9120110
Garemark, J., Ram, F., Liu, L., Sapouna, I., Cortes Ruiz, M. F., Larsson, P. T., & Li, Y. (2023). Advancing Hydrovoltaic Energy Harvesting from Wood through Cell Wall Nanoengineering. Advanced Functional Materials, 33(4), 2208933. https://doi.org/10.1002/adfm.202208933
Xie, J., Wang, L., Chen, X., Yang, P., Wu, F., Huang, Y., Xie, J., Wang, L., Chen, X., Yang, P., Wu, F., & Huang, Y. (2019). The Emerging of Hydrovoltaic Materials as a Future Technology: A Case Study for China. In Green Energy and Environment. IntechOpen. https://doi.org/10.5772/intechopen.90377
Li, L., Feng, S., Bai, Y., Yang, X., Liu, M., Hao, M., Wang, S., Wu, Y., Sun, F., Liu, Z., & Zhang, T. (2022). Enhancing hydrovoltaic power generation through heat conduction effects. Nature Communications, 13(1), 1043. https://doi.org/10.1038/s41467-022-28689-8
Barton, N. G. (2012). The Expansion-Cycle Evaporation Turbine. Journal of Engineering for Gas Turbines and Power, 134(051702). https://doi.org/10.1115/1.4004743
Pauluis, O. (2011). Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles. https://doi.org/10.1175/2010JAS3530.1
Nalim, M. R. (2002). Thermodynamic Limits of Work and Pressure Gain in Combustion and Evaporation Processes. Journal of Propulsion and Power, 18(6), 1176–1182. https://doi.org/10.2514/2.6076
Shao, C., Ji, B., Xu, T., Gao, J., Gao, X., Xiao, Y., Zhao, Y., Chen, N., Jiang, L., & Qu, L. (2019). Large-Scale Production of Flexible, High-Voltage Hydroelectric Films Based on Solid Oxides. ACS Applied Materials & Interfaces, 11(34), 30927–30935. https://doi.org/10.1021/acsami.9b09582
Zheng, C., Chu, W., Fang, S., Tan, J., Wang, X., & Guo, W. (2022). Materials for evaporation-driven hydrovoltaic technology. Interdisciplinary Materials, 1(4), 449–470. https://doi.org/10.1002/idm2.12033
Yin, J., Zhou, J., Fang, S., & Guo, W. (2020). Hydrovoltaic Energy on the Way. Joule, 4(9), 1852–1855. https://doi.org/10.1016/j.joule.2020.07.015
Li, L., Wang, X., Deng, W., Yin, J., Li, X., & Guo, W. (2023). Hydrovoltaic energy from water droplets: Device configurations, mechanisms, and applications. Droplet, 2(4), e77. https://doi.org/10.1002/dro2.77
Sherwood, S. C., Dixit, V., & Salomez, C. (2018). The global warming potential of near-surface emitted water vapour. Environmental Research Letters, 13(10), 104006. https://doi.org/10.1088/1748-9326/aae018
Gyllenram, R., Arzpeyma, N., Wei, W., & Jönsson, P. G. (2022). Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route. Mineral Economics, 35(2), 203–220. https://doi.org/10.1007/s13563-021-00267-2
Spreitzer, D., & Schenk, J. (2019). Reduction of Iron Oxides with Hydrogen—A Review. Steel Research International, 90(10), 1900108. https://doi.org/10.1002/srin.201900108
Naseri Seftejani, M., & Schenk, J. (2018). Thermodynamic of Liquid Iron Ore Reduction by Hydrogen Thermal Plasma. Metals, 8(12), 1051. https://doi.org/10.3390/met8121051
Gyllenram, R., Arzpeyma, N., Wei, W., & Jönsson, P. G. (2022). Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route. Mineral Economics, 35(2), 203–220. https://doi.org/10.1007/s13563-021-00267-2
Zang, G., Sun, P., Elgowainy, A., Bobba, P., McMillan, C., Ma, O., Podkaminer, K., Rustagi, N., Melaina, M., & Koleva, M. (2023). Cost and Life Cycle Analysis for Deep CO2 Emissions Reduction for Steel Making: Direct Reduced Iron Technologies. Steel Research International, 94(6), 2200297. https://doi.org/10.1002/srin.202200297
Mendoza, L. R. (2019). DRY BENEFICIATION OF LOW-GRADE IRON ORE FINES USING A TRIBO- ELECTRIC BELT SEPARATOR.
Leading companies in vacuum pumps. (n.d.). Thunder Said Energy. Retrieved March 22, 2024, from https://thundersaidenergy.com/downloads/vacuum-pumps-company-screen/
Burgmann, W., & Davené, J. (2012). Cost structure of vacuum degassing treatment for melt. 47, 81–88.
Hallström, S., Höglund, L., & Ågren, J. (2011). Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Materialia, 59(1), 53–60. https://doi.org/10.1016/j.actamat.2010.08.032
Hallström, S., Höglund, L., & Ågren, J. (2011). Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Materialia, 59(1), 53–60. https://doi.org/10.1016/j.actamat.2010.08.032
Czarski, A., Skowronek, T., & Matusiewicz, P. (2015). Stability of a Lamellar Structure – Effect of the True Interlamellar Spacing on the Durability of a Pearlite Colony / Stabilność Struktury Płytkowej – Wpływ Rzeczywistej Odległości Międzypłytkowej Na Trwałość Kolonii Perlitu. Archives of Metallurgy and Materials, 60(4), 2499–2504. https://doi.org/10.1515/amm-2015-0405
Wang, H., Cao, G., Li, S., Zhao, W., & Liu, Z. (2023). Eutectoid Transformation Kinetics of FeO under N2 and Air Atmospheres. Metals, 13(2), 220. https://doi.org/10.3390/met13020220
Zhang, C.-L., Li, S., Wu, T.-H., & Peng, S.-Y. (1999). Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction. Materials Chemistry and Physics, 58(2), 139–145. https://doi.org/10.1016/S0254-0584(98)00267-3
Judge, W. D., Allanore, A., Sadoway, D. R., & Azimi, G. (2017). E-logpO2 diagrams for ironmaking by molten oxide electrolysis. Electrochimica Acta, 247, 1088–1094. https://doi.org/10.1016/j.electacta.2017.07.059
Peng, Z., Hwang, J.-Y., Zhang, Z., Andriese, M., & Huang, X. (2012). Thermal Decomposition and Regeneration of Wüstite. In 3rd International Symposium on High-Temperature Metallurgical Processing (pp. 146–156). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118364987.ch18
roof and siding contractor. (n.d.). Retrieved March 4, 2024, from https://www.google.com/localservices/prolist?g2lbs=AIQllVzyAIbOPPGJAS4wiXw6IGIAJlLLC0eN4CkcV9e4aX5DsOFxdA7BPRpdjStl4ctfpZusmhyuyV42Sv2ViShWS2SqBEdwA0U6OpZODj0H7Wfl6r_91_NxeR8Wwty8HqxELEFcPRIw&hl=en-US&gl=us&cs=1&ssta=1&q=roof%20and%20siding%20contractor&oq=roof%20and%20siding%20contractor&slp=MgA6HENoTUl4ZXVBMU1MWmhBTVZiQmF0QmgwUXh3ZzNSAggCYAB6wgJDaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZja2k2OU43OXNiQ0FnQWhhS2hBQUVBRVFBaEFER0FBWUFoZ0RJaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZjcElCRW5KdmIyWnBibWRmWTI5dWRISmhZM1J2Y3FvQmd3RUtDUzl0THpBek4yTjVkd29KTDIwdk1EUnpPRFI1Q2dndmJTOHdObWg1WkJBQktoNGlHbkp2YjJZZ1lXNWtJSE5wWkdsdVp5QmpiMjUwY21GamRHOXlLQUF5SHhBQklodlJyLTM2d2JzUEFibU1TamNoT3RzWDhvWGg5ZlFDbHViVUNib3lIaEFDSWhweWIyOW1JR0Z1WkNCemFXUnBibWNnWTI5dWRISmhZM1J2Y3VBQkFBkgGnAgoNL2cvMTFqZGh3aGdrdgoLL2cvMXRneHRzN2sKDS9nLzExdjlmbGcycXAKDS9nLzExYjZzeXZoeG4KDS9nLzExYnltdjB0emQKCy9nLzF0ZjNwM3MwCg0vZy8xMWoyejZnY2dyCgwvZy8xaGR6aHdudnkKDC9nLzFobTVkOHNieAoLL2cvMXRnMzVmd3kKDS9nLzExYnR2d3kxeGwKDS9nLzExdDZyNXExancKCy9nLzF2NnA5MjI1Cg0vZy8xMWY1aG0zZmRoCgsvZy8xdGR4dzduZgoML2cvMWhod2ZraGJoCg0vZy8xMXNoMGQ1cWg5CgsvZy8xdGZ6Z19kegoNL2cvMTFiYnJneG5mcgoLL2cvMXRmdzM4NmsSBBICCAESBAoCCAE%3D&src=2&spp=Cg0vZy8xMXY5ZmxnMnFwOugBV2lRUUFCQUJFQUlRQXlJYWNtOXZaaUJoYm1RZ2MybGthVzVuSUdOdmJuUnlZV04wYjNLcUFZTUJDZ2t2YlM4d016ZGplWGNLQ1M5dEx6QTBjemcwZVFvSUwyMHZNRFpvZVdRUUFTb2VJaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZjaWdBTWg4UUFTSWIwYV90LXNHN0R3RzVqRW8zSVRyYkZfS0Y0ZlgwQXBibTFBbTZNaDRRQWlJYWNtOXZaaUJoYm1RZ2MybGthVzVuSUdOdmJuUnlZV04wYjNJPQ%3D%3D&serdesk=1&lrlstt=1709517974620&ved=2ahUKEwjLjfjTwtmEAxXFDTQIHeQUCaAQvS56BAgcEAE&scp=ChdnY2lkOnJvb2ZpbmdfY29udHJhY3RvchJMEhIJ5S3R6VeFhYARKkGG8Fx3pt8iHlRhbWFscGFpcy1Ib21lc3RlYWQgVmFsbGV5LCBDQSoUDa50jxYVdjjwth1zmJgWJTjf-rYwARoacm9vZiBhbmQgc2lkaW5nIGNvbnRyYWN0b3IiGnJvb2YgYW5kIHNpZGluZyBjb250cmFjdG9yKhJSb29maW5nIGNvbnRyYWN0b3I6AjAC
Leisner, T., Duft, D., Möhler, O., Saathoff, H., Schnaiter, M., Henin, S., Stelmaszczyk, K., Petrarca, M., Delagrange, R., Hao, Z., Lüder, J., Petit, Y., Rohwetter, P., Kasparian, J., Wolf, J.-P., & Wöste, L. (2013). Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions. Proceedings of the National Academy of Sciences, 110(25), 10106–10110. https://doi.org/10.1073/pnas.1222190110