The Present Through the Lens of the Future – Part 5 – Expanding ‘I’

Imagine it is 500 years in the future and there is a student whatever-the-equivalent of ‘reading’ whatever-is-the-equivalent of a ‘book’ of history*Given that ‘history is written by the victors’ and the narrative recorded in the ‘book’ will thus depend on the path society has taken, we are necessarily predicting the future when we seek to answer the question.  But absurd idealizations of objectivity aside, how might the present moment be viewed? about our present. What will be considered the grand challenge of our time*One boundary condition is necessarily that there is someone to ask the question, thus some degree of ‘victory condition’ must have been met (from an existential perspective).  So in answering the question, perhaps it is impossible to avoid the bias of our own perspective on what must be true if we are indeed going to survive.?

The contenders:

  • Climate Change
  • Finite Resources
  • A World Without Growth
  • Evolving Our Values
  • Expanding ‘I’
  • Coping with Acceleration
  • Digital Life
  • Polarization vs. Homogeneity

Expanding ‘I’

Valuing Ourselves, Society, and the Future

Another interpretation of ‘climate change as a symptom’ relates to our relative valuation of ourselves, the collective species, and the future.

Let’s look at the concept of an ‘externality’ – an impact on a system external to the source of agency. Climate change is described as a negative externality because the emissions that one member of society is responsible for may incur costs to other individuals. The locus of agency is the individual in this definition.

Climate is also an externality in the context of a broader definition of the source of agency. The society of the present (comprising individuals alive today) is choosing to continue to produce emissions that will incur costs to the society of the future (at least in part comprising individuals that are not alive today).

Perhaps our grand challenge is in the definition of what comprises ‘external’ – of the level of collective that we consider having agency.

At the present, we define the unit of agency as a single human. It’s obvious why – this is the level at which we directly feel a sense of ‘I’ and a sense of agency. However ‘I’ contains a whole lot of sub-entities (the 3 * 1013 cells in our body, the 4 * 1013 bacteria, etc.). We don’t hold our cells accountable for our actions, despite the fact that we are an emergent property of the pattern of interaction of these entities (other than the occasional neurological diagnosis where we blame a part of the brain for our abnormal behavior). But is the the primary experience of our existence any less arbitrary of a level at which to define ‘agency’ than others? Is a physician that fouls up a brain surgery because she hasn’t slept in 24 hours to blame, or is the hospital and the shift policy to blame? Or is the competitive nature of healthcare that requires hospitals to seek efficiencies in surgeon deployment in this country to blame? The answer is less clear.

What is more alive – an ant, or an ant colony? Ants have some modicum of processing power, and they each can be seen to be acting as independent agents. But ant colonies exhibit fantastically complex behavior that exceeds the complexity that can be modeled by an individual citizen of the colony. If we zoom out, sometimes it is easier to view the behavior of an ant colony as evidently comprising of agency than that of a single ant.

We are eminently more complex than an individual ant (and perhaps our own brains have sufficient modeling power to emulate a universal machine), but perhaps our society is, like ant colonies, a superspecies organism that exhibits yet higher complexity and deserves its own sense of agency.

One of the most famous studies in the history of social science is the ‘marshmallow test.’ It goes something like this:

The subject (typically a child) is told ‘you can have one marshmallow now, or you can have two marshmallows in 15 minutes.’ The first marshmallow is left in front of the subject during the 15 minute test period.

This test of delayed gratification supposedly correlates remarkably to various metrics of success and achievement later in life. It requires a theory of mind for oneself, a sufficient sense that one’s future self will have a preference for marshmallows not entirely dissimilar from one’s present self, and a sufficient valuation of said future self relative to said present self. Notable of the test is that there are no externalities – the only person affected is oneself (we’ll avoid the philosophical morass of discussing whether future selves and present selves are the same self).

If we’re held responsible as individuals, the analogy of the marshmallow test for climate would go something like:

The subject is told ‘you can have one marshmallow now, or you and another person who you’ve never met can have one marshmallow in 50 years.’ The first marshmallow is left in front of the subject during the 50 year test period.

Turns out, not as many folks are willing to wait under these conditions. The outcomes improve slightly if we make the situation a bit more personal:

The subject is told ‘you can have one marshmallow now, or you and your future child can have one marshmallow in 50 years.’ The first marshmallow is left in front of the subject during the 50 year test period.

Yet, still we don’t seem to be making the choice to wait for the second marshmallow.

But what if the level at which we took responsibility, and measured utility, wasn’t at the individual level, but at the societal level? Then the analogy would be:

The subject (a species) is told ‘you can have one marshmallow now, or you can have two marshmallows in 50 years.’ The first marshmallow is left in front of the subject during the 50 year test period.

Forgive the absurd analogies. The point is – perhaps our grand challenge is to evolve into a species-level superorganism that takes responsibility, and defines agency, at the species level. Then maybe, just maybe, we could all be the kid that waits for two marshmallows.

References

Segre, P. S., & Taylor, E. D. (2019). Large ants don’t carry their fair share: Maximal load carrying performance of leaf-cutter ants ( Atta cephalotes). Journal of Experimental Biology, jeb.199240. https://doi.org/10.1242/jeb.199240
Silva, A., Bacci Jr., M., Gomes de Siqueira, C., Correa Bueno, O., Pagnocca, F. C., & Aparecida Hebling, M. J. (2003). Survival of Atta sexdens workers on different food sources. Journal of Insect Physiology, 49(4), 307–313. https://doi.org/10.1016/S0022-1910(03)00004-0
Silva, A., Bacci, M., Gomes de Siqueira, C., Correa Bueno, O., Pagnocca, F. C., & Aparecida Hebling, M. J. (2003). Survival of Atta sexdens workers on different food sources. Journal of Insect Physiology, 49(4), 307–313. https://doi.org/10.1016/s0022-1910(03)00004-0
Haines, B. L. (1978). Element and Energy Flows Through Colonies of the Leaf-Cutting Ant, Atta colombica, in Panama. Biotropica, 10(4), 270–277. https://doi.org/10.2307/2387679
Wang, J., Li, Z., Park, A.-H. A., & Petit, C. (2015). Thermodynamic and kinetic studies of the MgCl2-NH4Cl-NH3-H2O system for the production of high purity MgO from calcined low-grade magnesite. AIChE Journal, 61(6), 1933–1946. https://doi.org/10.1002/aic.14789
Ren, G., Ye, J., Hu, Q., Zhang, D., Yuan, Y., & Zhou, S. (2024). Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nature Communications, 15(1), 4992. https://doi.org/10.1038/s41467-024-49429-0
Lee, S.-H., Kwon, Y., Kim, S., Yun, J., Kim, E., Jang, G., Song, Y., Kim, B. S., Oh, C.-S., Choa, Y.-H., Kim, J.-Y., Park, J. H., & Jeong, D.-W. (2024). A novel water electrolysis hydrogen production system powered by a renewable hydrovoltaic power generator. Chemical Engineering Journal, 495, 153411. https://doi.org/10.1016/j.cej.2024.153411
Seyfi, A., Afzalzadeh, R., & Hajnorouzi, A. (2017). Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chemical Engineering and Processing - Process Intensification, 120, 195–200. https://doi.org/10.1016/j.cep.2017.06.009
Chen, Y., He, J., Ye, C., & Tang, S. (2024). Achieving Ultrahigh Voltage Over 100 V and Remarkable Freshwater Harvesting Based on Thermodiffusion Enhanced Hydrovoltaic Generator. Advanced Energy Materials, 14(24), 2400529. https://doi.org/10.1002/aenm.202400529
Liu, P.-F., Miao, L., Deng, Z., Zhou, J., Su, H., Sun, L., Tanemura, S., Cao, W., Jiang, F., & Zhao, L.-D. (2018). A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Materials Today Energy, 8, 166–173. https://doi.org/10.1016/j.mtener.2018.04.004
Li, X., Zhang, K., Nilghaz, A., Chen, G., & Tian, J. (2023). A green and sustainable water evaporation-induced electricity generator with woody biochar. Nano Energy, 112, 108491. https://doi.org/10.1016/j.nanoen.2023.108491
Lasala, S., Privat, R., Herbinet, O., Arpentinier, P., Bonalumi, D., & Jaubert, J.-N. (2021). Thermo-chemical engines: Unexploited high-potential energy converters. Energy Conversion and Management, 229, 113685. https://doi.org/10.1016/j.enconman.2020.113685
Zhang, Z., Li, X., Yin, J., Xu, Y., Fei, W., Xue, M., Wang, Q., Zhou, J., & Guo, W. (2018). Emerging hydrovoltaic technology. Nature Nanotechnology, 13(12), 1109–1119. https://doi.org/10.1038/s41565-018-0228-6
Douville, H., Qasmi, S., Ribes, A., & Bock, O. (2022). Global warming at near-constant tropospheric relative humidity is supported by observations. Communications Earth & Environment, 3(1), 1–7. https://doi.org/10.1038/s43247-022-00561-z
Scribd. (n.d.). Scribd. Retrieved August 7, 2024, from https://www.scribd.com/fullscreen/30734361?access_key=key-yj7100lj9fj8cs54nz3
Energy Innovation: Massive Solar Downdraft Tower Proposed in Arizona | Energy Central. (n.d.). Retrieved August 7, 2024, from https://energycentral.com/c/ec/energy-innovation-massive-solar-downdraft-tower-proposed-arizona
Tao, T., Wang, Y., Ming, T., Mu, L., de Richter, R., & Li, W. (2023). Downdraft energy tower for negative emissions: Analysis on methane removal and other co-benefits. Greenhouse Gases: Science and Technology, 13(5), 713–720. https://doi.org/10.1002/ghg.2233
Chen, X., Goodnight, D., Gao, Z., Cavusoglu, A.-H., Sabharwal, N., DeLay, M., Driks, A., & Sahin, O. (2015). Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat Commun, 6. https://doi.org/10.1038/ncomms8346
Drinking-bird-enabled triboelectric hydrovoltaic generator - ScienceDirect. (n.d.). Retrieved August 7, 2024, from https://www.sciencedirect.com/science/article/pii/S266699862400108X
Lang, A. W., & Puzinauskas, P. V. (2008). Adding a Continuous Improvement Design Element to a Sophomore-Level Thermodynamics Course: Using the Drinking Bird as a Heat Engine. International Journal of Mechanical Engineering Education, 36(4), 366–372. https://doi.org/10.7227/IJMEE.36.4.7
Li, X., Feng, G., Chen, Y., Li, J., Yin, J., Deng, W., & Guo, W. (2024). Hybrid hydrovoltaic electricity generation driven by water evaporation. Nano Research Energy, 3(2). https://doi.org/10.26599/NRE.2024.9120110
Garemark, J., Ram, F., Liu, L., Sapouna, I., Cortes Ruiz, M. F., Larsson, P. T., & Li, Y. (2023). Advancing Hydrovoltaic Energy Harvesting from Wood through Cell Wall Nanoengineering. Advanced Functional Materials, 33(4), 2208933. https://doi.org/10.1002/adfm.202208933
Xie, J., Wang, L., Chen, X., Yang, P., Wu, F., Huang, Y., Xie, J., Wang, L., Chen, X., Yang, P., Wu, F., & Huang, Y. (2019). The Emerging of Hydrovoltaic Materials as a Future Technology: A Case Study for China. In Green Energy and Environment. IntechOpen. https://doi.org/10.5772/intechopen.90377
Li, L., Feng, S., Bai, Y., Yang, X., Liu, M., Hao, M., Wang, S., Wu, Y., Sun, F., Liu, Z., & Zhang, T. (2022). Enhancing hydrovoltaic power generation through heat conduction effects. Nature Communications, 13(1), 1043. https://doi.org/10.1038/s41467-022-28689-8
Barton, N. G. (2012). The Expansion-Cycle Evaporation Turbine. Journal of Engineering for Gas Turbines and Power, 134(051702). https://doi.org/10.1115/1.4004743
Pauluis, O. (2011). Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles. https://doi.org/10.1175/2010JAS3530.1
Nalim, M. R. (2002). Thermodynamic Limits of Work and Pressure Gain in Combustion and Evaporation Processes. Journal of Propulsion and Power, 18(6), 1176–1182. https://doi.org/10.2514/2.6076
Shao, C., Ji, B., Xu, T., Gao, J., Gao, X., Xiao, Y., Zhao, Y., Chen, N., Jiang, L., & Qu, L. (2019). Large-Scale Production of Flexible, High-Voltage Hydroelectric Films Based on Solid Oxides. ACS Applied Materials & Interfaces, 11(34), 30927–30935. https://doi.org/10.1021/acsami.9b09582
Zheng, C., Chu, W., Fang, S., Tan, J., Wang, X., & Guo, W. (2022). Materials for evaporation-driven hydrovoltaic technology. Interdisciplinary Materials, 1(4), 449–470. https://doi.org/10.1002/idm2.12033
Yin, J., Zhou, J., Fang, S., & Guo, W. (2020). Hydrovoltaic Energy on the Way. Joule, 4(9), 1852–1855. https://doi.org/10.1016/j.joule.2020.07.015
Li, L., Wang, X., Deng, W., Yin, J., Li, X., & Guo, W. (2023). Hydrovoltaic energy from water droplets: Device configurations, mechanisms, and applications. Droplet, 2(4), e77. https://doi.org/10.1002/dro2.77
Sherwood, S. C., Dixit, V., & Salomez, C. (2018). The global warming potential of near-surface emitted water vapour. Environmental Research Letters, 13(10), 104006. https://doi.org/10.1088/1748-9326/aae018
Gyllenram, R., Arzpeyma, N., Wei, W., & Jönsson, P. G. (2022). Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route. Mineral Economics, 35(2), 203–220. https://doi.org/10.1007/s13563-021-00267-2
Spreitzer, D., & Schenk, J. (2019). Reduction of Iron Oxides with Hydrogen—A Review. Steel Research International, 90(10), 1900108. https://doi.org/10.1002/srin.201900108
Naseri Seftejani, M., & Schenk, J. (2018). Thermodynamic of Liquid Iron Ore Reduction by Hydrogen Thermal Plasma. Metals, 8(12), 1051. https://doi.org/10.3390/met8121051
Gyllenram, R., Arzpeyma, N., Wei, W., & Jönsson, P. G. (2022). Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route. Mineral Economics, 35(2), 203–220. https://doi.org/10.1007/s13563-021-00267-2
Zang, G., Sun, P., Elgowainy, A., Bobba, P., McMillan, C., Ma, O., Podkaminer, K., Rustagi, N., Melaina, M., & Koleva, M. (2023). Cost and Life Cycle Analysis for Deep CO2 Emissions Reduction for Steel Making: Direct Reduced Iron Technologies. Steel Research International, 94(6), 2200297. https://doi.org/10.1002/srin.202200297
Mendoza, L. R. (2019). DRY BENEFICIATION OF LOW-GRADE IRON ORE FINES USING A TRIBO- ELECTRIC BELT SEPARATOR.
Leading companies in vacuum pumps. (n.d.). Thunder Said Energy. Retrieved March 22, 2024, from https://thundersaidenergy.com/downloads/vacuum-pumps-company-screen/
Burgmann, W., & Davené, J. (2012). Cost structure of vacuum degassing treatment for melt. 47, 81–88.
Hallström, S., Höglund, L., & Ågren, J. (2011). Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Materialia, 59(1), 53–60. https://doi.org/10.1016/j.actamat.2010.08.032
Hallström, S., Höglund, L., & Ågren, J. (2011). Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Materialia, 59(1), 53–60. https://doi.org/10.1016/j.actamat.2010.08.032
Czarski, A., Skowronek, T., & Matusiewicz, P. (2015). Stability of a Lamellar Structure – Effect of the True Interlamellar Spacing on the Durability of a Pearlite Colony / Stabilność Struktury Płytkowej – Wpływ Rzeczywistej Odległości Międzypłytkowej Na Trwałość Kolonii Perlitu. Archives of Metallurgy and Materials, 60(4), 2499–2504. https://doi.org/10.1515/amm-2015-0405
Wang, H., Cao, G., Li, S., Zhao, W., & Liu, Z. (2023). Eutectoid Transformation Kinetics of FeO under N2 and Air Atmospheres. Metals, 13(2), 220. https://doi.org/10.3390/met13020220
Zhang, C.-L., Li, S., Wu, T.-H., & Peng, S.-Y. (1999). Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction. Materials Chemistry and Physics, 58(2), 139–145. https://doi.org/10.1016/S0254-0584(98)00267-3
Judge, W. D., Allanore, A., Sadoway, D. R., & Azimi, G. (2017). E-logpO2 diagrams for ironmaking by molten oxide electrolysis. Electrochimica Acta, 247, 1088–1094. https://doi.org/10.1016/j.electacta.2017.07.059
Peng, Z., Hwang, J.-Y., Zhang, Z., Andriese, M., & Huang, X. (2012). Thermal Decomposition and Regeneration of Wüstite. In 3rd International Symposium on High-Temperature Metallurgical Processing (pp. 146–156). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118364987.ch18
roof and siding contractor. (n.d.). Retrieved March 4, 2024, from https://www.google.com/localservices/prolist?g2lbs=AIQllVzyAIbOPPGJAS4wiXw6IGIAJlLLC0eN4CkcV9e4aX5DsOFxdA7BPRpdjStl4ctfpZusmhyuyV42Sv2ViShWS2SqBEdwA0U6OpZODj0H7Wfl6r_91_NxeR8Wwty8HqxELEFcPRIw&hl=en-US&gl=us&cs=1&ssta=1&q=roof%20and%20siding%20contractor&oq=roof%20and%20siding%20contractor&slp=MgA6HENoTUl4ZXVBMU1MWmhBTVZiQmF0QmgwUXh3ZzNSAggCYAB6wgJDaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZja2k2OU43OXNiQ0FnQWhhS2hBQUVBRVFBaEFER0FBWUFoZ0RJaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZjcElCRW5KdmIyWnBibWRmWTI5dWRISmhZM1J2Y3FvQmd3RUtDUzl0THpBek4yTjVkd29KTDIwdk1EUnpPRFI1Q2dndmJTOHdObWg1WkJBQktoNGlHbkp2YjJZZ1lXNWtJSE5wWkdsdVp5QmpiMjUwY21GamRHOXlLQUF5SHhBQklodlJyLTM2d2JzUEFibU1TamNoT3RzWDhvWGg5ZlFDbHViVUNib3lIaEFDSWhweWIyOW1JR0Z1WkNCemFXUnBibWNnWTI5dWRISmhZM1J2Y3VBQkFBkgGnAgoNL2cvMTFqZGh3aGdrdgoLL2cvMXRneHRzN2sKDS9nLzExdjlmbGcycXAKDS9nLzExYjZzeXZoeG4KDS9nLzExYnltdjB0emQKCy9nLzF0ZjNwM3MwCg0vZy8xMWoyejZnY2dyCgwvZy8xaGR6aHdudnkKDC9nLzFobTVkOHNieAoLL2cvMXRnMzVmd3kKDS9nLzExYnR2d3kxeGwKDS9nLzExdDZyNXExancKCy9nLzF2NnA5MjI1Cg0vZy8xMWY1aG0zZmRoCgsvZy8xdGR4dzduZgoML2cvMWhod2ZraGJoCg0vZy8xMXNoMGQ1cWg5CgsvZy8xdGZ6Z19kegoNL2cvMTFiYnJneG5mcgoLL2cvMXRmdzM4NmsSBBICCAESBAoCCAE%3D&src=2&spp=Cg0vZy8xMXY5ZmxnMnFwOugBV2lRUUFCQUJFQUlRQXlJYWNtOXZaaUJoYm1RZ2MybGthVzVuSUdOdmJuUnlZV04wYjNLcUFZTUJDZ2t2YlM4d016ZGplWGNLQ1M5dEx6QTBjemcwZVFvSUwyMHZNRFpvZVdRUUFTb2VJaHB5YjI5bUlHRnVaQ0J6YVdScGJtY2dZMjl1ZEhKaFkzUnZjaWdBTWg4UUFTSWIwYV90LXNHN0R3RzVqRW8zSVRyYkZfS0Y0ZlgwQXBibTFBbTZNaDRRQWlJYWNtOXZaaUJoYm1RZ2MybGthVzVuSUdOdmJuUnlZV04wYjNJPQ%3D%3D&serdesk=1&lrlstt=1709517974620&ved=2ahUKEwjLjfjTwtmEAxXFDTQIHeQUCaAQvS56BAgcEAE&scp=ChdnY2lkOnJvb2ZpbmdfY29udHJhY3RvchJMEhIJ5S3R6VeFhYARKkGG8Fx3pt8iHlRhbWFscGFpcy1Ib21lc3RlYWQgVmFsbGV5LCBDQSoUDa50jxYVdjjwth1zmJgWJTjf-rYwARoacm9vZiBhbmQgc2lkaW5nIGNvbnRyYWN0b3IiGnJvb2YgYW5kIHNpZGluZyBjb250cmFjdG9yKhJSb29maW5nIGNvbnRyYWN0b3I6AjAC
Leisner, T., Duft, D., Möhler, O., Saathoff, H., Schnaiter, M., Henin, S., Stelmaszczyk, K., Petrarca, M., Delagrange, R., Hao, Z., Lüder, J., Petit, Y., Rohwetter, P., Kasparian, J., Wolf, J.-P., & Wöste, L. (2013). Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions. Proceedings of the National Academy of Sciences, 110(25), 10106–10110. https://doi.org/10.1073/pnas.1222190110